Physique

TRAVAUX DIRIGES nº15

2024-2025

Thème: Thermodynamique (Révision PCSI)

Mercredi 27 novembre 2024

Gaz parfait

TH014 - Dissociation d'un gaz

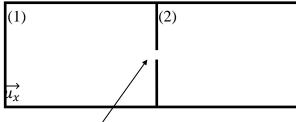
- **1** Quel est le volume V_0 occupé par 1,00 g de dibrome à $t_0 = 600$ °C sous la pression standard $(P^\circ = 1,00 \ bar)$, en assimilant la vapeur à un gaz parfait.
- **2 -** Que deviendrait ce volume (soit V_1) à $t_1 = 1600 \, ^{\circ}C$.
- **3 -** L'expérience montre que ce volume est en fait $V'_1 = 1,19$ L.

Interpréter qualitativement et quantitativement ce résultat expérimental.

TH002 - Effusion gazeuse

Le récipient ci-contre est constitué de deux compartiments de même volume V maintenus à la température T. A l'instant t=0, une mole d'un gaz parfait remplit le compartiment (1), le compartiment (2) étant vide, et on perce un petit trou de section s entre les compartiments.

Il se produit le phénomène d'effusion gazeuse



trou de section s

On note $N_I(t)$ et $N_2(t)$ les nombres de molécules dans les compartiments (1) et (2). Soit $(\overrightarrow{u_x}, \overrightarrow{u_y}; \overrightarrow{u_z})$ un trièdre cartésien dont $\overrightarrow{u_x}$ est la normale au trou de section s.

On adopte pour le gaz parfait le modèle simplifié suivant :

- i la norme v de la vitesse \overrightarrow{v} de toutes les molécules est identique et égale à la vitesse quadratique moyenne v_a .
- ii dans tout élément de volume $d\tau$, les vecteurs vitesses des molécules sont parallèles à l'une des six directions des vecteurs unitaires cartésiens avec un sixième des molécules dans chacune des directions
- **1** Etablir l'expression du nombre $dN_{1\rightarrow 2}$ de molécules contenues dans le compartiment (1) à l'instant t traversant la surface s vers le compartiment (2) entre les instant t et t+dt.

Même question pour le nombre $dN_{2\rightarrow 1}$.

- **2** En déduire les expressions de $\frac{dN_1}{dt}$ et de $\frac{dN_2}{dt}$ en fonction de N_1 , N_2 , s, v_q et V.
- **3 -** Etablir les expressions de $N_1(t)$ et de $N_2(t)$.

Commenter les valeurs limites de N_1 et N_2 . Faire apparaître une constante de temps τ caractéristique du phénomène observé.

Comment pourrait-on accéder expérimentalement aux variations de $N_I(t)$ et de $N_2(t)$ en fonction de t? <u>Application numérique</u>: Calculer τ dans le cas du diazote

The explication numerique is Calcular
$$\tau$$
 dans le cas du diazote $T=293~K~;~V=20~L~;~s=1,0~mm^2~;~v_q=\left(\frac{3k_BT}{m}\right)^{1/2}~;~M(N_2)=28~g.mol^{-1}~;~k_B=1,38.10^{-23}~J.K^{-1}~$

4 - Comment varie τ avec la masse m des molécules ? L'hydrogène H possède un isotope utilisé pour réaliser la réaction de fusion thermonucléaire, le deutérium D dont le noyau est constitué d'un proton et d'un neutron. Expliquer brièvement comment on peut enrichir en dideutérium D_2 un mélange de dihydrogène H_2 et de dideutérium D_2 par effusion gazeuse.

TH016 - Pompe à vide

Le piston dans le cylindre de la pompe glisse sans frottement. Le volume maximal admissible dans le corps de pompe est V_0 et le volume minimal est nul (piston en butée au fond du cylindre). Les deux soupapes S_1 et S_2 permettent l'admission de l'air venant du réservoir qu'on cherche à « vider » et le refoulement de cet air dans l'atmosphère. Le piston est actionné par un moteur qui fait un tour lorsque le piston fait un allerretour

S1 S2 V,T

L'air sera assimilé à un gaz parfait dont la température T est constante. Au départ, la pression dans le réservoir vaut $p_0 = 1.000.10^5 Pa$. On néglige le volume du tuyau reliant la pompe au réservoir.

1 – 1^{er} aller-retour

Le piston est en butée à gauche et $p = p_0$ dans le réservoir.

 S_2 étant ouverte et S_1 fermée. Le piston est tiré complètement vers la droite.

Lors du retour du piston. S₂ est fermée et S₁ ouverte. L'air du cylindre est complètement refoulé à l'extérieur.

Déterminer la pression p_1 à la fin de cette opération.

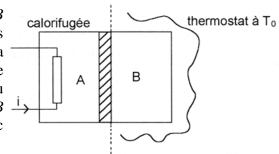
- **2** De même, déterminer p_2 à la fin du $2^{\text{ème}}$ aller-retour.
- 3 En déduire la pression p_n après le n ième aller-retour.
- **4** La fréquence de rotation du moteur est de 300 $tr.min^{-1}$. Déterminer le temps t pour obtenir une pression $p = 1.00010^2 Pa$.

Données : V = 10.0 L ; $V_0 = 50.0 cm^3$.

Premier principe

TH028 – Enceinte à double compartiment

Un cylindre horizontal est divisé en deux compartiments A et B de même volume V_0 par un piston coulissant sans frottement. Ils contiennent chacun **une mole** de gaz parfait monoatomique à la température T_0 et à la pression p_0 et de même capacité thermique molaire à volume constant C_{vm} . Le piston et les parois du compartiment A sont parfaitement calorifugés. Celles de B $\stackrel{!}{\rightarrow}$ permettent les transferts thermiques (diathermes) avec un thermostat à la température T_0 .



Le compartiment A est porté à la température T_I grâce à une résistance chauffante.

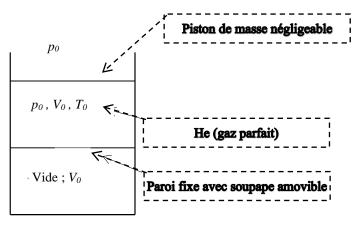
- a) Exprimer les volumes V_A , V_B et la pression dans chaque compartiment à l'équilibre.
- b) Quelle est la variation d'énergie interne du système A + B?
- c) Quel est le travail transféré par A pour B (la transformation est supposée mécaniquement réversible) ? En déduire le transfert thermique Q_B effectué avec le thermostat.
- d) Exprimer le transfert thermique Q_A fourni par la résistance chauffante.

★ TH0212 Détente contre le vide

Données :
$$V_0 = 2 L$$
 ; $p_0 = 1 \ bar$ $T_0 = 300 \ K$; $\gamma = 1,66$

On ouvre la soupape. On attend l'équilibre final.

- 1 Quelle est la pression finale p?
- 2 Quel est le travail des forces de pression extérieures au gaz ?
- 3 Quelle est la température finale du gaz ?



enceinte rigide adiabatique

TH026 - Calorimétrie

On veut obtenir un whisky bien frappé en ajoutant un glaçon de $V_g = 1.0 \text{ cm}^3$ (qui sorte tout juste du compartiment à $-4.0 \,^{\circ}\text{C}$ du réfrigérateur) à $V_W = 10 \, \text{cm}^3$ d'un whisky qui titre $d = 43 \,^{\circ}\text{G.L.}$ (Gay-Lussac) et qui se trouve à la température ambiante $T_a = 20 \,^{\circ}\text{C.}$

En supposant qu'on laisse fondre complètement la glace, quelle est la **température minimum** atteinte par le mélange ? On négligera la contraction volumique provenant du mélange eau-alcool. On précisera les hypothèses utilisées.

<u>Données</u>: $C_p(eau) = 4.2 \text{ J.K}^{-1}.g^{-1}$; $C_p(glace) = 2.1 \text{ J.K}^{-1}.g^{-1}$; $C_p(alcool) = 2.5 \text{ J.K}^{-1}.g^{-1}$

Masses volumiques $\rho(glace) = 0.92 \text{ g.cm}^{-3}$; $\rho(alcool) = 0.79 \text{ g.cm}^{-3}$

Chaleur latente massique de fusion de la glace (à 0°C) $L = 334 J.g^{-1}$

1 °G.L. correspond à 1 cm³ d'alcool dans 100 cm³ de solution.

TH0210 - Neige artificielle

Un canon à neige pulvérise dans l'air à la température $T_e = -15^{\circ}C$ des gouttelettes d'eau de rayon R = 10 μm et de température $T_i = 10$ $^{\circ}C$ supposée uniforme. La gouttelette entretient avec l'air des échanges thermiques de puissance :

$$P_{th} = 4.\pi R^2 h.(T(t) - T_e)$$
 où $h = 10 W.m^{-2}.K^{-1}$,

T(t) est la température instantanée de la gouttelette. La pression ambiante est constante $p_0 = 1 \ bar$.

- a) A l'aide du premier principe appliqué à l'eau de la gouttelette pendant une durée *dt*, établir l'équation différentielle d'évolution de sa température (supposée uniforme).
- b) Calculer le temps nécessaire pour qu'une gouttelette atteigne la température $T_s = -5$ °C, dite température de surfusion puisque l'eau reste liquide.
- c) L'état de surfusion est alors rompu. Calculer alors la fraction massique de glace qui se forme. On supposera la transformation suffisamment rapide pour être considérée adiabatique et isobare.
- d) Calculer le temps nécessaire à la solidification du reste de l'eau.
- e) Calculer la variation d'entropie totale de la goutte.

Données : masse volumique de l'eau liquide : $\rho = 1,00.10^3 \text{ kg.m}^{-3}$

capacité thermique massique de l'eau liquide : $c_{\ell} = 4,18 \text{ kJ.kg}^{-1}.\text{K}^{-1}$

chaleur latente de fusion de la glace à 0° C : $\ell = 333 \text{ kJ.kg}^{-1}$

capacité thermique massique de la glace : $c_g = 2,08 \text{ kJ.kg}^{-1}.K^{-1}$

Second principe

TH034 - Mélange de deux masses d'eau

On mélange dans un calorimètre idéal deux masses d'eau liquide m et m' prises aux températures T et T'. La capacité thermique massique de l'eau c est supposée indépendante de la température.

1 - Calculer la variation d'entropie △S du système.

2 – Développer au $2^{\text{ème}}$ ordre ΔS pour $\left|\frac{T-T'}{T}\right| \ll 1$ c'est-à-dire $T' = T(1+\varepsilon)$ avec $\varepsilon << 1$. Commenter.

Donnée : Entropie d'une phase condensée idéale : S = C. lnT

TH036 - Détente isotherme réversible

Un cylindre diathermane fermé par un piston constitue un système perméable à la chaleur. Il contient une mole de gaz parfait dans l'état initial $T_1 = 273 \text{ K}$ et $P_1 = 3.10^5 \text{ Pa}$

Ce système est plongé dans un bain eau-glace constituant un thermostat à 273 K.

On agit sur le piston mobile pour détendre réversiblement le gaz jusqu'à $P_2 = 2.10^5 Pa$.

On donne $R = 8.315 \text{ J.K}^{-1}.\text{mol}^{-1}$

- 1 Déterminer la masse de glace apparaissant dans le thermostat. L'enthalpie massique de fusion de la glace est $L = 334 \, J.g^{-1}$
- 2 Calculer la variation d'entropie du gaz et celle du thermostat.

★ TH032 - Variation d'entropie lors d'un effet Joule

Un courant d'intensité I=1,0 A circule pendant $\tau=1,0$ min dans un conducteur ohmique de résistance R=20 Ω et de capacité thermique supposée constante C=8,4 $J.K^{-1}$.

On supposera que pour le conducteur ohmique, son énergie interne et son enthalpie ne dépendent que de sa température.

- 1 Calculer la variation d'entropie de la résistance ainsi que celle de l'univers dans les deux cas suivants :
 - a la température de la résistance est maintenue constante ($T_i = 27 \, {}^{\circ}C$).
 - b la résistance est thermiquement isolée (température initiale $T_i = 27 \, ^{\circ}C$).
- **2** Dans le deuxième cas, on rétablit, après l'extinction de la source de courant, le contact de la résistance avec le thermostat à la température T_i . Déduire la variation d'entropie de l'univers au cours de cette dernière transformation.

Donnée : Entropie d'une phase condensée idéale : S = C. lnT

TH046 – Transformation d'un mélange liquide-vapeur de mercure (extrait DEUG 1998)

Un récipient de volume $V_0 = 1,00$ m^3 contient $m_0 = 8,00$ kg de mercure de masse molaire M = 200,6 $g.mol^{-1}$.

Les parois sont parfaitement calorifugées.

Un résistor, parcouru par un courant électrique permet un apport de chaleur à l'intérieur du récipient.

Le résistor sera considéré comme un thermostat à la température $T_3 = 800 \ K$. Cette source de chaleur est capable d'apporter une puissance thermique constante $P_0 = 10 \ kW$ pendant la durée Δt de chauffage nécessaire pour faire passer le mercure de $T_1 = 573 \ K$ à la température $T_2 = 673 \ K$.

On appelle $x = \frac{m_v}{m_0}$ la fraction massique de vapeur dans le récipient.

Données :	T(K)	573	673
	$p_s(bar)$	0,330	2,10
	$\ell_{v}(kJ.kg^{-1})$	297,0	293,7
	$v_v (m^3.kg^{-1})$	0,700	0,128

 p_s : pression de vapeur saturante

 $R = 8.31 \text{ J.K}^{-1}.\text{mol}^{-1}.$

 $\ell_{\rm V}$: chaleur latente massique de vaporisation

 v_V = volume massique de la vapeur saturante assimilée à un gaz parfait de coefficient $\gamma = 1,67$

On considèrera le mercure à l'état liquide incompressible et indilatable de volume massique $v_L = 7,70.10^{-5} \, m^3.kg^{-1}$ et de capacité thermique $c_L = 0,135 \, kJ.kg^{-1}.K^{-1}$.

1 – Etude de l'équilibre liquide-vapeur à la température T_1

Calculer la masse initiale m_{vI} et le titre initial x_I de vapeur.

2 – Etude de l'équilibre liquide-vapeur à la température *T*₂.

Calculer la masse initiale m_{v2} et le titre initial x_2 de vapeur.

3 – Diagramme du corps pur

Représenter la transformation du mercure, de l'état (1) à l'état (2) dans le diagramme de Clapeyron (p,v), v étant le volume massique. Tracer en particulier les isothermes d'Andrews.

Représenter la transformation dans le diagramme (p,T)

4 - Bilan thermique

Calculer la chaleur Q reçue par le mercure au cours de la transformation.

Calculer la durée Δt de fonctionnement du thermostat.

5 – Bilan entropique Calculer la variation d'entropie du mercure

Y a-t-il création d'entropie dans l'Univers ? Si oui, calculer sa valeur.

TH044 - Surfusion du phosphore

Dans un récipient calorifugé on a m = 10 g de phosphore surfondu à la température T = 307 K à la pression atmosphérique.

1 - On fait cesser la surfusion et on observe un nouvel état d'équilibre diphasé.

Déterminer la masse de chacune des phases

- 2 Calculer la variation d'entropie du système.
- 3 Quel serait l'état final du système si la température initiale du phosphore surfondu est T = 290 K?

Données: sous la pression atmosphérique, $T_{fusion} = 317 \text{ K}$ $\ell_f = 20.9 \text{ kJ.kg}^{-1}$. $c_{p \ liq} = 0.795 \text{ J.K}^{-1}.g^{-1}.c_{p \ sol} = 0.840 \text{ J.K}^{-1}.g^{-1}$.

TH042 – Evaporation sous vide

Une masse m_0 d'eau liquide de volume V_0 de température T_0 est contenue dans une fiole reliée par un robinet enceinte de volume V_1 où règne initialement le vide.

L'ensemble est calorifugé et $V_1 >> V_0$.

On ouvre le robinet et on attend l'état d'équilibre final. On remarque qu'une partie de l'eau liquide s'est vaporisée.

On appellera : T la température finale

 P_s la pression de vapeur saturante de l'eau à la température finale.

c la capacité thermique massique de l'eau liquide.

 ℓ_v la chaleur latente massique de vaporisation de l'eau à la température T.

1 – Etablir une relation entre ces grandeurs et les données du problème.

2 – Déterminer la variation d'entropie de l'eau. Commenter.

Machines thermiques

TH054-Thermopompe (ICARE 1999 – PSI - PT)

Une thermopompe est constituée d'un compresseur C parfaitement isolé, qui aspire en (1) l'air à la pression atmosphérique p_1 et à la température $T_1 = 280$ K et qui le refoule à la pression p_2 et à la température T_2 . L'air circule dans un échangeur E où il produit son effet utile en se refroidissant, à pression constante, de T_2 à $T_3 = 330$ K. On note \dot{Q}_E la puissance thermique qu'il cède au second fluide traversant cet échangeur entre (5) et (6).

L' air se détend ensuite dans une turbine T parfaitement isolée, dont il sort à la pression $p_4 = p_1$ et à la température T_4 . Il se réchauffe ensuite par mélange avec l'air atmosphérique.

Le compresseur et la turbine fonctionnent de façon réversible. Il sont couplés mécaniquement et un moteur M entraîne le groupe ainsi constitué.

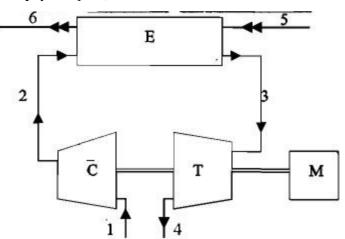
L'air est assimilable à un gaz parfait de chaleur massique à pression constante indépendante de la température: $Cp = 1.0 \ kJ.K^{-1}.kg^{-1}$ et de rapport des chaleurs massiques :

$$\gamma = \frac{C_p}{C_n} = 1.4$$

Cette thermopompe fonctionne avec une débit d'air constant $D = 0.01 \text{ kg.s}^{-1}$.

$$\frac{T_2}{T_1} = \frac{T_3}{T_4} = x = 1.5$$

- 1 Représenter le cycle 1-2-3-4-1 sur une diagramme de Clapeyron (p, V).
- **2** Calculer la pression p_2 .
- **3** Exprimer la puissance \dot{W}_c du compresseur en fonction de D, c_p , T_1 et T_2 . Calculer \dot{W}_c .
- **4 -** Calculer la puissance \dot{W}_T de la turbine et celle du moteur d'entraı̂nement \dot{W}_M .
- ${\bf 5}$ Calculer la puissance thermique de l'échangeur \dot{Q}_E .
- **6** Définir l'efficacité η de la thermopompe. Donner son expression en fonction du seul paramètre x et calculer T_I .



TH058 - Thermodynamique physique : Moteur réversible

Un moteur thermique ditherme réversible fonctionne à l'aide des deux pseudo-sources de chaleur de même capacité thermique $C = 400 \text{ kJ.K}^{-1}$ et de températures $T_f(t)$ et $T_c(t) \ge T_f(t)$ a priori non constantes.

Les températures initiales des sources sont : $T_1 = 385 K$

$$T_2 = 285 K$$

- **1** Etablir une relation entre T_1 , T_2 , $T_f(t)$ et $T_C(t)$.
- 2 A quelle condition sur les températures des sources le moteur cesse-t-il fonctionner ?
- 3 Calculer le travail total fourni par le moteur jusqu'à son arrêt. Application numérique.

4 – Calculer le rendement du moteur à partir des énergies totales échangées.

Application numérique.

5 – Quel serait ce rendement si les sources avaient gardé leurs températures initiales ?

★ TH052 – Régime transitoire d'un réfrigérateur

L'intérieur d'un réfrigérateur est assimilé à un système de capacité calorifique C de température T_2 lentement variable. Son isolation thermique étant imparfaite, il échange avec l'extérieur de température T_1 , une puissance thermique proportionnelle à la différence de température : $P_1 = G(T_1-T_2)$.

Le moteur qui fait fonctionner la machine frigorifique, fournit une puissance mécanique P_m . On suppose que l'efficacité frigorifique de la machine est égale à celle d'une machine réversible fonctionnant entre T_1 et T_2 , affectée d'un coefficient η .

- 1 Etablir l'équation différentielle vérifiée par $T_2(t)$.
- 2 Déterminer la valeur de T_2 au bout d'un temps suffisamment long.
- 3 Exprimer sous la forme d'une intégrale le temps mis pour atteindre la température T_2 .

Données : $C = 10 \text{ kJ.K}^{-1}$

$$G = 10 \text{ W.K}^{-1}$$
;

$$\eta = 0.5$$

$$P_m = 120 W$$
;

$$T_1 = 300 K$$
.

